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Abstract
GiantVM is the state of the art distributed hypervisor (VEE
2020) which is based on KVM. It allows to start a guest OS
whose CPU and memory are provided by several physical
machines. In this paper, we study the origin of performance
overhead of GiantVM – which is the DSM, hence, in term of
number of page faults. Then we propose several optimiza-
tions which allow to improve performances by about 39%.
Moreover, based on our study and proposed optimizations,
we laid out guidelines to build a distributed hypervisor that is
independent and flexible – easy to evolve, from a distributed
shared memory (DSM) system..

CCS Concepts: •Computer systems organization→ Em-
bedded systems; Redundancy; Robotics; • Networks →
Network reliability.
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1 Introduction
Despite the introduction of virtualization technology, data
centers (DC) still face the problem of server fragmentation,
which causes a considerable loss of money for operators. For
example, Microsoft estimates in 2020 that a 1% reduction
in fragmentation within its Azure cloud platform would
result in hundreds of millions of dollars in savings [1]. This
problem is fundamentally due to the classical server-centric
architecture [2], which is massively adopted in today’s DC.
In this architecture, the DC is made of monolithic servers,
each including all necessary hardware resources (mainly
CPU, RAM, network and disk) to run applications. The latter
are constrained to a single server boundaries.
Among the approaches that have been proposed to reduce
fragmentation, rack disaggregation1 [2–8] appears to be the
1For practicability purposes, DC disaggregation is always studied at the
rack scale.

most promising approach. It consists in consolidating a large
pool of hardware resources (CPUs, RAM, disk, network, etc.)
into a single large rack-scale computer. Hence, in this model,
the DC can be seen as a set of very large machines, that can
each be dynamically partitioned into applications with very
flexible and diverse resource allocations. In order to become
viable in practice, disaggregation requires (i) very efficient
network communication between the elements/machines
within the rack and (ii) specific support from the system
software (OS, hypervisor).
Two forms of disaggregation, that we name hard disaggrega-
tion and soft disaggregation, have been proposed in the recent
years. Hard disaggregation [8–11] is a more aggressive ap-
proach, as it requires a deep redesign of both hardware and
software layers. In hard disaggregation, the rack is built as
a cluster of specialized and independent resource boards (a
resource-centric architecture) instead of a cluster of mono-
lithic servers. Each resource board is a specialized machine
that offers only one resource type to applications. Resource
boards are interconnected with an ultra-fast network fab-
ric [12]. Soft disaggregation [2, 4–7] consists in using tra-
ditional monolithic servers and adapting only the software
layers to allow a VM to simultaneously use resources from
several machines (within a rack). The high performance of-
fered by current DC network technologies (e.g., Infiniband)
makes soft disaggregation exploitable in the current server-
centric architecture [3].
We focus on soft disaggregation solutions as it is viable with
today’s technologies compared to hard disaggregation. Here-
after we just use the term disaggregation to refer to soft dis-
aggregation. Most research work in disaggregation focused
only on memory disaggregation (far memory utilization),
allowing a centralized VM (which vCPUs all run on a single
machine) to remotely use free memory of other nodes. These
solutions assume that memory is the limiting resource for
server consolidation in the cloud. The recent paper published
by Microsoft in 2020 at OSDI by Ambati et al. [1] showed
that in their cloud, things are different: “In more than 80%
of cases where we could not allocate the hypothetical VM, the
scarcest resource (i.e., the one that prevents the allocation) is
cores...In the vast majority of remaining cases, disk space is the
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constraint.. Far memory utilization based solutions is ineffi-
cient in this context. Therefore, the need for investigating
distributed VMs, while still providing a single system image
(SSI) to cloud users, is becoming crucial.
Zhang et al. [7] introduced GiantVM, a Linux/KVM-based
and open source distributed hypervisor which allows to start
distributed VMs. To this end, GiantVM implements a dis-
tributed shared memory (DSM) based on Ivy protocol [13].
A distributed VM is made of a set of centralized VMs which
share the same memory using the DSM. While some of the
challenges have been discussed in the GiantVM paper (such
as interrupt distribution and distributed timer synchroniza-
tion), GiantVM includes the following limitations: (1) it does
not distribute virtual disks; (2) it does not allow live migra-
tion; (3) it is closely linked with the x86 implementation of
KVM, which has two consequences. First, it is architecture
dependent (Intel). Secondly, linking the two code bases (KVM
sources and GiantVM ones) is error prone, making it very
difficult to maintain and scale.
The work presented in this paper focuses on the two lat-
ter limitations. First, we study the origin of performance
overhead of GiantVM, then we propose several optimization
ideas which improve GiantVM by up to 39%. Moreover, based
on our study and the proposed optimizations we lay out the
fundations to build distributed hypervisors that have generic
and flexible (easy to evolve) DSM design for distributed VMs.
The rest of the paper is organized as follows. Section 2 in-
troduces GiantVM. Section 3 presents our contributions and
their performance impact. Section 5 presents the related
work. Section 6 concludes the paper.

2 GiantVM
This section provides a summary of the key concepts and
architecture of GiantVM, for further details refer to [7] . Gi-
antVM is a QEMU-Linux/KVM based distributed hypervisor
which allows to launch distributed guest OSes, as shown
in Fig. 1. To run a distributed virtual machine, we basically
start multiple sub VMs, which resides on different physical
nodes and need to be synchronized and then synchronize
the sub VMs to obtain a global entity. To build GiantVM,
the authors modified both QEMU (user space application)
and KVM (kernel module). In the following we describe how
each resource is virtualized and distributed by GiantVM.

vCPU. They are QEMU threads. They are one of the easiest
resources to distribute since their state (set of registers) does
not need to be shared. A vCPU state needs to be accessed
(read and write) only locally by the vCPU/thread. GiantVM
starts on each node all the vCPUs of the distributed VM
except that the vCPUs that are not local are paused waiting
for an exit event (see below). These vCPUs are called shadow
vCPUs.

Figure 1. GiantVM architecture (taken from [7]).

Memory. GiantVM relies on the Distributed Shared Memory
(DSM) approach [13] to ensure memory coherence. This ap-
proach is generic and can be applied to any memory portion
as long as there is an access protection mechanism. On mod-
ern architectures, access to memory is controlled through the
page table. GiantVM leverages nested paging [14] in KVM,
which uses two page table layers for each VM. The first
page table is called extended page table (EPT) and is used to
map guest physical addresses to host physical addresses. The
second page table is the one of the QEMU process (which
represents the VM) from the point of view of the host kernel.
The first page table is managed by KVM while the second
one is managed by the host OS. In GiantVM, the DSM is only
applied to the EPT. Thus only the accesses performed by the
guest OS (vCPUs) to its memory are managed by DSM. Ac-
cesses performed by other QEMU threads (mainly peripheral
ones) to the guest memory may not be coherent, thus need
to be managed carefully.
Concerning the DSM, a page (when using the DSM) can
have one of the following three states, also called the MSI
protocol [2] : Modified, Shared, or Invalid. An Invalid page
is not available locally and it needs to be fetched from the
owner node. The page can either be requested in Shared or
Modified mode. Shared mode is used when the page is to be
accessed in read mode, and Modified mode is used when the
page is to be accessed in read and write mode.
The DSM mechanism ensures that a page is accessible in the
write mode on only one node. This is done by invalidating
access rights to all other nodes. However, if a page is only
accessed in read mode then multiple copy can coexist con-
currently on multiple nodes. Thus a page within a node can
either be in shared state (read mode), modified state (write
mode) or invalid.

Devices. In GiantVM, devices are not distributed. They are
all managed by a single node, called node 0. GiantVM imple-
ments an event router that is responsible of routing events
from other nodes to the node 0.
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Figure 2. Description of the state diagram of the MSI pro-
tocol. In blue is the access of the process which provoke a
transition, in green the actions of the protocol either to a
local access or a remote one.

3 Performance Analysis
In this section we study the performance of GiantVM, and
then provide optimizations based on our findings.

Experimental setup. It is important to notice that we want
to measure the performance/impact of the software design,
to determine how expensive the DSM used in GiantVM is,
assuming that the network latency (requests latency) is small
as possible. For this reason, we carried out the experiments
on a single machine on which VMs communicate using a
shared memory. This is the fastest communication mecha-
nism that we can have. The used machine is DELL Latitude
5490 with 4 CPUs and 8 GB of RAM. The GiantVM virtual
machine has 2 vCPUs, 2 GB RAM and runs a small debian
distribution with Linux kernel 4.9.217. It is composed of two
VMs, each having one vCPU and 1 GB of RAM. The bench-
mark is the startup followed by the shutdown of GiantVM.
We consider this as a good starting point to evaluate Gi-
antVM because of the following reason. When booting or
terminating, the VM’s guest OS accesses several memory
pages, which may lead to several page faults due to DSM.
This may lengthen boot and termination times. The need
to start or terminate very quickly a VM in the cloud is very
important for scalability [15].
We are interested in two metrics: the number of page faults
(internal metrics) and the benchmark execution time. Each
result presented in this paper is the average of five executions.
The baseline is the execution of the VM without distribution.

Results. We counted 973,542 page faults generated during
the execution of GiantVM vs 63,927 page faults with the
baseline. As a consequence, it takes 17.19 seconds to boot
and stop the distributed VM and 5.2 seconds for the baseline,
which corresponds to about 3x performance degradation
(note: GiantVM boot phase requires a time to synchronize
the different instances which can go up to 4 seconds – can
be further optimized). Fig. 3 shows how often guest page
numbers (GPN) are subject to page faults. We observed that
91,773 distinct GPN are at the origin of the 973,542 page
faults. 74% of GPN generate only one fault. 10 GPN generate
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Figure 3. Number of page faults per group of pages

30% of all faults. The latter observation makes these 10 GPN
critical for performance, thus justifying our attention below.
Table 1 presents the number of faults for each of these 10
GPN. We can see that GPN 7685 is the most critical one, its
proportion of faults is about 16% of the total faults generated
by the 10 GPN. By analysing the kernel binary we found that
GPN address 7685 holds the following variables:

f f f f f f f f 8 1 e 0 5 1 c 0 d b i t _w a i t _ t a b l e
f f f f f f f f 8 1 e 0 5 0 4 0 d hpet
f f f f f f f f 8 1 e 0 5 0 0 0 D j i f f i e s
f f f f f f f f 8 1 e 0 5 0 0 0 D j i f f i e s _ 6 4
f f f f f f f f 8 1 e 0 5 0 8 0 D mml i s t _ l o ck
f f f f f f f f 8 1 e 0 5 1 8 0 d pidmap_lock
f f f f f f f f 8 1 e 0 5 1 0 0 d s o f t i r q _ v e c
f f f f f f f f 8 1 e 0 5 0 c 0 D t a s k l i s t _ l o c k

Page align optimization. Variable colocation within the
same memory page may lead to false sharing in the DSM.
This is a well known problem in the research topic of coher-
ent processor cache implementation on SMP machines. It
is generally handled by dedicating a cache line (the coher-
ence unit) to each critical variable. Here is an illustration for
jiffies variable in Linux source code
. . . uns igned long j i f f i e s _ _ c a ch e l i n e _ a l i g n ed_ i n _ smp . . .

In our context, we propose to dedicate amemory page to such
variables. To do so, we adopt a straightforward approach
which consists in just configuring the kernel to consider that
a cache line is 4KB size (a page size). The cumulated size of
these pages is about 32KB, which is very negligible compared
to the total size of the VM (order of GB). By this way, all
variables in the kernel which where parametrized by Linux
developers to be aligned on a cache line will be assigned
a dedicated memory page. This simple implementation re-
duces the total number of page faults by about 21%, which
corresponds to about 39% in the reduction of the benchmark
execution time.
Although this first optimization reduces the number of faults,
we still have four GPN which generate several faults as
shown in Fig. 4. Table 2 presents the number of faults for
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GPN 507422 8843 507897 508947 1309719 508951 7753 7686 8842 7685
# PF 9592 11279 11713 11934 12432 13697 15165 20020 22218 164703

Table 1. The 10 more critical GPN. # PF means the number of page faults.
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Figure 4. Number of page faults when the cache line size if
configured to 4KB.

GPN 7685 7804 9013 7686
# PF 10611 13203 20755 100188

Table 2. The 4 more critical GPN when the cache line size if
configured to 4KB.

each of these four GPN. By analysing Linux kernel code,
we found that except GPN 9013, the three others hold only
one variable (as a consequence to our first optimization).
The most faulted GPN (7686) holds hpet, GPN 7804 holds
rcu_sched_state, and GPN 7685 holds jiffies. In the cur-
rent state of progress of our work, we focused on GPN
7686/hpet and GPN 7685/jiffies, which are variables used
by Linux to provide timer and clocking.

GPN 7686/hpet optimization. By analysing the piece of
code that accesses the hpet timer, we found that there are
two available implementations. The first one is simple as
it consists in directly reading the raw value of the timer
each time the kernel requests it. The second implementation,
which is more scalable, uses a cache which is protected by
a lock. We found that the latter is the root cause of faults
generation in DSM. 64-bit Linux systems uses this second
version by default. By switching to the first implementation,
we eliminate this issue.

GPN 7685/jiffies optimization. jiffies is a variable
which is frequently modified for clocking purposes in Linux.
We observed that the Ivy synchronization algorithm (which
is write invalidate) used by GiantVM is not appropriate for
memory pages which hold such variables. Each modifica-
tion by a node of the distributed VM generates a fault and
invalidates the memory page on other nodes. We decided

to investigate a different synchronisation algorithm, that
we call write update, for this specific GPN. Note that the
latter is known in advance as the kernel binary is known.
jiffies is modified by do_timer function in Linux. We
modify do_timer to realize a hypercall in order to ask the
hypervisor to realize the modification of jiffies. The hy-
percall parameters include the GPN of the page which holds
jiffies, the offset of the variable in that page, and the new
value of jiffies. The handler of the hypercall, which runs
inside the hypervisor, first locally updates the memory page,
then asks the other nodes to realize the same operation. As
a result, the guest OS (its vCPUs) never directly modifies
jiffies, thus eliminating faults and invalidations in the
DSM. The cost of the hypercall is negligible compared to
the sum of the cost of the faults and invalidations generated
by the DSM. This optimization reduces the number of page
faults by about 17.05%

4 Discussion
In the previous section we learn that there are several factors
affecting the performance of a distributed hypervisor, those
can be improved by simple optimization in the guest OS
software. However, we learned from our study that the de-
sign and architecture of distributed VMs should be changed,
especially in term of DSM management. This is explained in
this section.

Figure 5. GiantVM simplified view

GiantVM simplified view: the DSM is linked with KVM.
Fig. 5 presents a simplified view of the way GiantVM han-
dles memory distribution. As the VM runs in QEMU, its
memory is managed by Linux Memory Manager. Meanwhile,
as KVM is in charge of memory virtualization, it manages
EPT and does the necessary translations using the page ta-
ble of QEMU. GiantVM implements the DSM directly into
KVM. This makes GiantVM difficult to debug and improve.
GiantVM hangs when the number of nodes is greater than
two. We found that the main cause of GiantVM program-
ming errors and the difficulty to handle them is the fact that
GiantVM’s DSM implementation is intertwined with KVM.
This complicates the evolution of both code base: KVM is
developed by the Linux community while GiantVM is devel-
opped by Zhang et al. [7].
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Figure 6. Independent DSM management

We have analyzed the distribution of modifications made by
GiantVM authors in the KVM files. It appears that their code
is distributed in many files in a not contiguous way. There
are files that contain minor modifications(return values of
functions for instance) and some others (like mmu.c) that has
the highest number of non contiguous modified blocs. This
study shows how much GiantVM and KVM are intertwined.
Moreover, since GiantVM uses the version 4.9.76 of the
Linux Kernel, it will be complicated to make it evolve.
To summarize, GiantVM’s design is not generic: (1) it is
linked to KVM, more precisely its Intel implementation; (2)
it can only work onmachines with EPT (Extended Page Tech-
nology) features; (3) GiantVM applies Ivy DSM protocol to
the whole VM while we see that write update could improve
the system for some kernel variables.

Use a file system. To address these challenges, we suggest
that we extract the DSM management from the hypervisor,
for it to be easier to improve and make the system more
modular. This is depicted in Fig. 6. Here, when a page fault
rises, the handler transfers the fault handling to the memory
manager of the hypervisor. To handle the fault, the memory
manager can call the DSM. To this end, we propose that
hypervisor’s memory manager should allow the ability to
register callbacks for DSM implementations. After its exe-
cution, the DSM uses a communication library to contact
other nodes. Several implementations of the communication
interface can be used by the DSM. We can cite Ethernet,
Infiniband RDMA, shared memory, etc.
The DSM is implemented as a file system which is used to
back all memory sections representing the guest OS memory.
Thus, the memory manager calls the DSM using the Linux
Virtual File System API. To realize the reverse path, the DSM
registers with the Linux memory manager using its MMU
notifier framework. It also allows the implemention and
utilization of several DSM synchronization policies.
The usage of such a system would help GiantVM to be im-
proved with regards to its design.

5 Related work
Providing the illusion of a single system image (SSI) to a
distributed OS has been a hot topic in the past. This can
be achieved either in the hardware, the hypervisor, or the
OS. The survey made by Healy et al. [16] in 2016 provides
a good historical perspective. Unlike our work, most prior
solutions have been realized in the context of non virtualized
machines.

Hardware-level solutions. We found both commercials [17–
19] and academia solutions [20–22]. These systems provide
to the processors transparent access to several memory units
and peripherals of the platform. The main disadvantage of
these systems is that they are highly expensive making them
more suitable for HPC-like environments rather than the
cloud.

OS-level solutions. The 90s have seen the development of
most SSI systems [23–28]. These systems implemented only
a limited transparency level due to the tremendous number
of components to distribute (process, file descriptors, sockets,
proc file system, ...). More recent works took into account
heterogeneous systems [29, 30] which are more commonly
found in cloud-like environments. Finally, other works [31]
envisioned SSI for disaggregated racks. The disadvantage of
these solutions is that they are OS specific and they do not
take into account virtualization.

Hypervisor-level solutions. GiantVM [7], the system that
we study in this paper, is the most recent SSI implementated
at the hypervisor-level. Among other projects [32–35], we
found vSMP from ScaleMP [36], an active commercial solu-
tion on which no documentation is publicly available. The
main limitation of these solutions is that they are highly
rigid (specific architecture, OS, static number of sub virtual
machines, etc.). Our proposed design is generic and flexible.

6 Conclusion and future works
We analyzed the performance and the design of giantVM,
a KVM-based distributed hypervisor. About performance,
we proposed several optimizations that allow to accelerate
VM boot and termination times. These optimizations share
the same goal which is the minimization of the number of
page faults caused by critical kernel’s data structures. We are
currently extending this approach to user space applications.
In fact, critical data structures of user space applications can
be identified during the pre-production phase, where the
application is tested with several typical workloads.
Concerning the design contribution, we proposed to extract
the DSM management from KVM, such that the debugging,
and the evolution of both systems would be smoother. To
achieve that, we proposed that the hypervisor provides an in-
terface with callbacks that the DSM manager would register
to in order for them to be linked and to communicate.
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As a future work we plan to build a KVM-based distributed
hypervisor, that shall not manage the DSM of the distributed
virtual machines.
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